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Abstract

We analyze the influence of diffusion on the reversible isomerization reactias A, occurring within a zeolite catalyst, of spherical,
cylindrical, and slab geometries. The intra-crystalline diffusion process is described by the Maxwell-Stefan (M—S) equations. Two different
guest—hostonfinement scenarios are examined. Farongly confined guest molecules, the M-S diffusivitie®; decrease with loading
inside the zeolite. For weakly confined guest molecules, the M-S diffusivitjiese independent of the loading. The correlation effects,
typical of zeolite diffusion, are described by introducingeathange coefficientb;, in the M-S diffusion formulation. Fdacileexchange,

P12.00, COrrelation effects are washed out. Fimite exchange, a logarithmic interpolation formula is used to calcutatefrom the

two pure component M-S diffusivities;. Analytic expressions for the effectiveness factor are derived for a variegnihement and

exchange scenarios. In the development of the analytic solution we assume Langmuirian behavior of the pure components and that the
mixture sorption loadings can be calculated from the multicomponent Langmuir isotherm. By means of a variety of numerical examples,
we stress the various characteristic features of intra-crystalline diffusion influences in zeolite catalysis. The effectiveness factor is found
to a strong function of (a) molecular loadings and mixture composition, (b) ratio of diffusivities of the participating species, and (c) the
reaction equilibrium constant. Only for the case of low loadings of weakly confined guest molecules and vanishing correlation effects, is
the classical formula for the effectiveness factor valid.

© 2003 Elsevier B.V. All rights reserved.

Keywords: Maxwell-Stefan theory; Zeolite catalysis; Isomerization; Effectiveness factor; Correlation effects; Confinement effects

1. Introduction fluenced inter alia by zeolite topology and connectivity
[10,12]

Zeolites are widely used in the processing industries to  There are very few publications that analyze diffusion
catalyze a variety of reactions such as cracking, oxida- and chemical reaction within zeolite catalysts. One of the
tion, isomerization, and alkylatiofi—5]. From a practical ~ first analyses of diffusion-reaction in zeolite catalysts was
point of view it is necessary to describe the influence of by Ruthven[13] who considered an irreversible reaction,
intra-crystalline diffusion on the chemical reaction. The with the product exiting the reaction zone instantaneously.
description of the diffusion process is complicated by the Theodorou and Wef14] analyzed a first-order isomerisa-
fact that there are more than 100 different zeolite structurestion reaction in a two-dimensional lattice, assuming the two
available[6]. Viewed simply, these structures fall into three species to have identical diffusivities. Sundaresan and Hall
broad categories: (a) structures with intersecting channels,[15] used a lattice model to examine the influence of pore
(b) cages-separated-by-windows, and (c) essentially cylin- blocking on reactivity.
drical channels, sometimes with side “pockets”; Bag 1 The major objective of this paper is to describe the
The diffusivities are strongly dependent on the pore size influence of diffusion on zeolite catalysis in a generic
and zeolite topology. Depending on the guest—host combi- manner that is valid for a variety of zeolite topologies
nation, zeolite diffusivities show a variety of dependencies and guest-host combinations. We use the Maxwell-Stefan
on the molecular loading1,2,7-11] Correlation effects  (M-S) formulation [16-20] for describing zeolite diffu-
on diffusion need to be considered; these effects are in-sion. In order to develomnalytic solutions for the ef-

fectiveness factor, we restrict our analysis to a reversible
isomerization reaction A <> Aj. Such isomerization re-

* Corresponding author. Tel+31-20-5257007; fax:-31-20-5255604.  actions are of great significance to the petroleum industry
E-mail address: krishna@science.uva.nl (R. Krishna). [3-5].
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Nomenclature

List of symbols

b; parameter in the pure component Langmuir adsorption isotherm(Pa

[B] square matrix with elements defined Byg. (9)(m—2s)

$;(0) M-S diffusivity of species at zero loading (rhs™1)

b, M-S diffusivity of species (m?s~1)

P12 exchange M-S diffusivity describing interchange betwieandj (m?s-1)

ki forward reaction rate constant‘és)

ko backward reaction rate constant £

N; molar flux of species (molm2s-1)

pi partial pressure of speciégPa)

(o molar loading of component(mol kg™1)

Osat saturation loading (mol kg')

r reaction rate (3%)

R gas constant (8.314 JmdiK 1)

T absolute temperature (K)

z distance along diffusion path in crystal (m)

Greek letters

B B = J{D20)/DP1(0)[Ak1/k2) + D]}/ A[(D2(0)/P1(0)) (k1/k2) + 1] (dimensionless parameter)

X parameter defined biq. (C.2)(dimensionless)

8 characteristic distance of zeolite crystal; half thickness of slab, radius of spherical or cylindrical catalyst

¢ Thiele modulusg = (8/2)+/(k1/P1(0)) + (k2/P2(0)) (dimensionless)

® modified Thiele modulus; seBable 1(dimensionless)

y confinement parametey;= 0 for weak,y = 1 for strong (dimensionless)

n effectiveness factor (dimensionless)

i dimensionless partial pressuregy; (dimensionless)

i molar chemical potential (J mot)

v reaction stoichiometric coefficient; = 1 for reactant A; v = —1 for product A

0; fractional occupancy of componen®; = g;/gsat (dimensionless)

;s fractional occupancy at catalyst surface (dimensionless)

00 fractional occupancy at center of catalyst (dimensionless)

Oy fractional vacancydy = 1 — 61 — 6, (dimensionless)

2] O = (/21— (1/¥2) — 2In(¥)/¥2)))/(|11 — (1/¥?)|) (dimensionless parameter)

0 density of zeolite (kg m3)

w o = ((k1 + k2)019)/(k2(1 — Bys)) (dimensionless parameter)

& dimensionless distance along catalyst: 0 (center) £ = 1 (surface)

4 U= /[(A+ (A - A)b19k1 + (1 + (A — Dbag)ko]/(Ak1 + k2) (dimensionless parameter)

s ¢ =1 for slab,z = 2 for cylinder,z = 3 for sphere (geometry parameter)

5 5= B+ [(Grs+ 629 P1(0)/P12(0))])

A dimensionless diffusivity ratioA = (2(0)/P1(0)[1 + (b1s+ 025) (P1(0)/P12(0))]/
[1+ (B1s+ 029 (D2(0) /D12(0))]

Subscripts

0 referring to surface at center of catalyst= 0

1 referring to species 1

2 referring to species 2

[ referring to species

S referring to surface at positign= 1

sat referring to saturation conditions

\% vacancy

& at position¢ within catalyst

Vector and matrix notation

component vector
square matrix

m)
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Fig. 1. Pictorial representation of the molecular jumps in: (a) intersecting channel structures, (b) cages separated by windows, and (c) iffugjtenfile d

in one-dimensional channels.

2. The Maxwell-Stefan formulation for zeolite diffusion

In the M-S formulation, the chemical potential gradients
are written as linear functions of the fluxgs6—20}

_pQSatﬁ% _ 02N1— 01N> ﬂ

8 RT o0& D1o Dy’ 1)
_ Pgsat 02 O _ O1N2 — 02N1 AL

6 RT o0& D12 D2

where the fractional occupanciés serve as replacements
for mole fractions used for description of bulk fluid phase
diffusion. In this paper, we consider three different geome-
tries of zeolite crystals, as shown liig. 2

We have to reckon in general with two types of
Maxwell-Stefan diffusivities:P; and-P1,. TheD; are the
diffusivities that reflect interactions between spediesd
the zeolite matrix; they are also referred to as jump or
“corrected” diffusivities in the zeolite literaturg,2]. Ex-
perimental and molecular dynamics (MD) simulation data
for weakly confined guest molecules in zeolitic hosts (e.g.
methane, He, Ne, Ar in MFI) show tha; are practically
independent of the loading, i.e. occupariéy9,18,21]

BD; = P;(0) 2

For diffusion of larger guest molecules, such ag CHs,
and 2-methylhexane (2MH) in MFI a different loading de-
pendence ofP; has been observed in M[®,10] and Ki-
netic Monte Carlo (KMC) simulation22—24] These stud-
ies show thatb; decreases strongly with the loading and
follows the relation

BD; = P;(0)6y €]

where 6y is the vacancypy = 1 — 61 — 62. By defining

a confinement parameter (y = 1 for strong,y = O for
weak), we may write the following general expression for
the occupancy dependence of the M-S diffusivity:

D; = Di(0)6, (4)
Whether a molecule follows scenario (2) or (3) depends
also on adsorbate—adsorbate interactif@$2,25]and ze-
olite topology[11]. The loading dependence can also lie
intermediate between the weak and strong confinement
scenariog10].

Catalyst
slab

0.
Catalyst
cylinder
6o
g=o |
E=1

Fig. 2. Three different zeolite catalyst geometries considered in this work.
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Fig. 1 portrays the molecular jump processes in: (a) in- The elements of the matri¥] are dependent on the molec-
tersecting channel structures, (b) cage-type structures, sepular occupancies within the zeolite. In the analytic solutions
arated by windows, and (c) single-file diffusion diffusion in to be developed below, we evaluate the matB &t the
one-dimensional channels. Site-to-site jump leaves behind aconditions prevailing on theurface of the catalyst, i.e. at
vacancy. Subsequent jumps are more likely to fill this va- loadingst;s and assume] to beé-invariant. This assump-
cancy, thus producing “vacancy correlation” effeld®,26]. tion will be validated subsequently by comparing the ana-
When the jump of speciescreates a vacancy and this va- lytic solutions with precise numerical solutions wherein the
cancy is filled by specigjs the vacancy correlation effectis  occupancy dependence @][is accounted for in a precise
captured by the term containing the “exchange” coefficients manner.

P12 in Eq. (1) The Onsager reciprocal relations demand  Rearrangind=g. (8)

P12 = P21. The net effect of this exchange is a slowing 5

down of a faster moving species due to interactions with a B--N—(S _ (0 19 (10)
species of lower mobility. Also, a species of lower mobility £-"" ogsat Y o )’ t=4

is accelerated by interactions with another species of higher’=1

mobility.

and summingEq. (10) over both species and introducing

For estimation of theb12, Krishna and Wesselingl16] (1 + 72) = (L/6y) — 1:

suggested the logarithmic interpolation formula:
2 2
P = [_Bl(o)]Gl/(91+02)[_32(0)192/(014-02)9\7; = _312(0)9\}; ZZBUQ& _ _9\);+1M _ _9\);—1@ (11)
) i=1j=1 P gsat 0§ 3

The interpolation strategy (5) has been verified by compari- Introducing the elements;; from Eq. (9) we note that the
son with Monte Carlo and molecular dynamics simulations off-diagonal terms drop out in the double summation on the
[26,27] For zeolite topologies with high connectivities, left member ofEq. (11)to yield
the exchange coefficienD;> can be expected to be high,
as has been shown by Skoulidas et [40]. For facile 3 Nio g1 (12)
particle—particle exchange, i.®12 — oo, vacancy corre- pqsatPi(0) Voo
lation effects tend to get washed out.

We assume that the individual component loadings follow
the multicomponent Langmuir isotherm

i=1

3. Effectiveness factor

4 bipi
0= gsat 1+ bipi+bopo The differential equations describing the diffusion and
i . reversible isomerization reactiomA> A, within the three
T 1tmtm Oymiy i=12 (6) zeolite catalyst geometries consideredFig. 2 are:
where we define the dimensionless pressufes b; p;. The 1 ﬁ

Iny = ;o i=12 1
chemical potential gradients Bg. (1)may be expressed in  §&¢-1 9¢ & 7ND = pgsawirs i =1, (13)

terms of the gradients of the occupancies by expressing the

chemical potential gradients in terms of the (dimensionless) Where the stoichiometric coefficients = 1 for reactant A
partial pressure gradients andvy; = —1 for product A. For Langmuir—Hinshelwood

kinetics, the reaction rateis

0; i 6; dp; 87Ti. .o
RToe  poe Ve ITh? " kabip1 — kebzp
- 101p1 — k2b2p2
pi =Tt = k101 — koO2 = Oy (k11 — kom2)
Eqg. (1)may be recast inta-dimensional matrix express- T O1p1+b2p2
ing the fluxes explicitly in terms of the dimensionless pres- (14)
sure gradients . _
9 The outer surface of the catalygt£ 1) is in equilibrium
Pqsat; 11 ,y+107 i [ .
(N) = — 8sa[B] 19\;;+ % ®) with the bulk fluid phase
where we define the-dimensional square matriB] with §=10 pi=pis ai=qs 0 =0s
elements mTi=mis; O =06vs (15)
Biy=—— + 02 : By = _L; At the center of the catalyst, the fluxes, and gradients, vanish:
D1(0) D120 D12(0) ” 200
61 ) AN N i _ 0. _
D2(0)  P1200) D12(0) © 9 le=o % le=o
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SubstitutingEqg. (14)into Eqg. (13)we obtain after rear-  Replacing partial pressure gradients with vacancy gradients

rangement using Egs. (21) and (22)we obtain asingle differential
equation in terms of the vacancy gradients
1 0 o
-9 —1py+1 “19%) e _
82601 ¢ (é o Z‘;B ag) vir =12 139 g1 LAY t 36y /6vs)
- &1k fvs %
a7) N 1
an 2
IntegratingEg. (17)once we obtain = (6¢BEW) (% - ﬁ) (25)
122:3_1% _ 82 554_%@) de (18) subject to the boundary conditions given Bgs. (15) and
vi = LiogE T =10y (16). The parametesp is the classical Thiele modulus
The right member oEq. (18)is i-invariant. Hence, we may _ 0k k2 (26)
inter-relate the partial pressure gradients of components 1° = ¢\ P1(0)  P2(0)
and 2'
) The dimensionless parametggsand = are defined in the
Z _10m; _ EZB,;% (19) Nomenclature section. Analytic solutionsEg. (25)can be
Litge v ~ 2J b derived for various special cases as shown irppendix A
B _ (strong confinement@ppendix B(equal diffusivities), and
Slmpllfymg Eq. (19)we obtain: Appendix C(weak confinement). These analytic solutions
dr1 DaAO)L + (O1s+ 629(B1(0)/D12(0))] i are exact only for: (1) facile exchange and strong confine-

— =- - ment; (2) facile exchange and equal diffusivities. For the
08 DO + (015 + 029 (P2(0)/D12(0))] % weak confinement scenario with facile exchange the analytic
=_A—=% (20) solution is exact only for the limiting cases ¢f— oo and
0§ ¢ — 0. We show below, by comparing with precise numer-
Integrating Eq. (20)we obtain the partial pressure and ical solutions that the presented analytic solutions are ex-
occupancy profiles in terms of the vacancy profijés) and cellent approximations for both confinement scenarios, even

the occupancies at the surface of the catalyst(1), i.e. for finite exchange, for a wide range of Thiele moduglii
0;s, that are known. The solutions for the vacancy profilg (&) and effectiveness
factorn areformally identical to the classical solutiofi3]:
o A _ Abys + 015+ Abos
TA-Dev . (A-Dovs O _ L (¥P-tyeoshon
A Abys + 015+ Abas Nz P2 cosh®) ’ -
61 = — Ov (21)
(A-1 (A = 1)ovs Oy 1 w2 — 1\ Ip(2PE) _
— = ; cylinden(¢ = 2)
1 Abas+ bvs + 6 bus ¥ e @)
2s S 1s 2 .
Ty = — ; 1 w< — 1\ sinh(3®
2T 1= Aoy (1— A)bys w _ — + 5 . N S); sphere = 3)
Ovs W 4 sinh(3®)
6 1 Abos+ bys + 9139\/ (22) @7)
b= -
1-24) (1— A)bvs
With Egs. (21) and (22)he reaction rate can be expressed and
purely in terms of the vacandy, (¢) and the occupancies at _ tanh(®) slabz = 1
the surface: a ’ ¢=1
Ak + k2 2 Oy = NCP - indere = 2)
_ _ g2V Y. =" = 28
(A-1) <1 Y evS> ’ "= onen T o
1 1 1
(A+ (1— Moroks + (L1 (A — Dozoks et <— - _> . spherez = 3)
U= 23 ’
\/ Ak T k) (23) tanh3®) 3@

where we define generalized Thiele modulus®, that is
related to theclassical Thiele modulusp in different ways
depending on the specific scenarios; these are specified in
Table 1 For all three geometries, the effectiveness factor
yields the limiting value

1 ( 1 )/+1 8771 .
5{ B”V] 1= 1, 2 1
82501 3 Z n== (29)

Evaluating the elements of the matrig][at the surface
occupancies);s, and assuming these to be constant we may
re-write Eq. (17)as

(24)
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Calculation of modified Thiele modulus for various scenarios

Scenario Formula for modified Remarks about analytic solution
Thiele modulus
Equal diffusivities:P1(0) = H2(0) D =¢pE Exact

Strong confinement
Weak confinement

@ = ppEW
® = ($BEY/O)

Exact for facile exchange; for finite exchange, a very good approximation
Exact for facile exchange in the limiting cas¢s—~ oo and ¢ — 0; for all
other cases, including that for finite exchange, a very good approximation

for large values of the modified Thiele modul&s and low
values of the effectiveness factor s&q. (29) represents

precise numerical solutions using the numerical methods de-
scribed on our websitehttp://ct-cr4.chem.uva.nl/zeolites/

a classical result that is well entrenched in the chemical In the numerical approach, the partial differential equations
reaction engineering literatufas].

Occupancies of the individual components can be ob- entire set of equations is solved using a sparse matrix DAE
tained by combinindeq. (27)with Egs. (21) and (22)

4. lllustrative examples

are discretized using a finite volume discretization and the

solver as described by Kooijmg29]. For all the four cases
shown there is excellent agreement between the analytic so-
lutions and the numerical solutions. For facile exchange,
the analytic solutions are exact and we should expect pre-
cise agreement between the analytic and numerical solu-

We shall illustrate the many peculiarities of zeolite diffu- tions. For finite exchange, the key assumption made in the
sion by means of several illustrative examples. Let us first derivation of the analytic solution is that the elements of the
consider the special case in which the diffusivities of the two matrix [B] is constant along the diffusion path and can be

components Aand A participating in the isomerization re-
action Ay <> A are equal, i.eP1(0) = P»(0). For the case

evaluated from the (known) surface occupanciks, The
excellent agreement between the numerical and analytic so-

of equal diffusivities, the total vacancy is constant along the lutions for finite exchange testifies to the validity of the key

diffusion path, as shown iAppendix B The fractional occu-
pancy of component Ais given byEq. (B.5)of Appendix B
represented by continuous linesHig. 3ataking k1 = 2ko;

¢ = 1.1547;6,5 = 0.6; 625 = 0.2. Both weak and strong
confinement scenarios, with either faci# »(0) — oo or
finite exchange (followindeq. (5) are considered in the cal-

assumption.

The effectiveness factar is plotted inFig. 3bas a func-
tion of the classical Thiele modulus for both weak and
strong confinement, with either facit®12(0) — oo or fi-
nite exchange (followindeq. (5). The continuous lines are
the calculations for a spherical catalyst uskag (28) tak-

culations. The profiles for the fractional occupancy of com- ing @ = ¢Z. The factorZ' serves to “correct” the classical

ponent A is related to that for component;Ai.e. 62
1 — 61 — 6ys. The different symbols irFig. 3arepresent

0.6

0.5

0.4

0.3

Fractional occupancy of 1, 6,

0.2

0.0 0.2 0.4 0.6 0.8 1.0

(a)

strong, facile ex
strong, finite ex
weak, facile ex
weak, finite ex

HO®O

k,/k, = 2; ¢ =1.1547;
D,(0)/D,(0)=1;
6,=0.6; 6,02 _

I N N Y T o

dimensionless distance, &

Thiele modulusyp to take account of confinement and ex-
change effects.

=
S
] L
“é D,(0)/D,(0)=1;
© | 6,:=0.6; 6,=0.2
(]
=2
©
2 O strong, facile ex
o0 H © strong, finite ex
H O weak, facile ex
I weak, finite ex
1 I T | 1 T I T I |
0.1 1 10
(b) Thiele modulus, ¢

Fig. 3. (a) Fractional occupancy profiles for componenbil, along the diffusion path in a spherical catalyst b= 1.1547, and (b) effectiveness
factor n vs. classical Thiele modulug, for equal diffusivities of the two specie®;(0) = P,(0). Other parameters atg = 2ky; 615 = 0.6; 65 = 0.2.
Symbols represent precise numerical solutions obtained using the numerical techniques described on ouhtiyelisiter4.chem.uva.nl/zeolitesThe
continuous lines in parts (a) and (b) are drawn udiigg. (B.5) and (28)respectively), with definitions o as in Table 1


http://ct-cr4.chem.uva.nl/zeolites/
http://ct-cr4.chem.uva.nl/zeolites/

R. Baur, R. Krishna/Chemical Engineering Journal 99 (2004) 105-116 111

For facile exchange of weakly confined molecules, the 0.8 Asyx ooooO0oOoooo0ooon
“correction” factor £ = 1, and therefore; for this case <
coincides with the classical case. Finite exchange tends to 0.7

reduce 5. The effectiveness for strong confinement is signif-
icantly lower than for the corresponding weak confinement

0.6

= b

g" r
case; this is because of the fact that the M-S diffusivities < F D,0)B,(0)=1
decrease with loading followingq. (3) 3 0.5 ©

One of the key features of zeolite diffusion is the influ- g Ty O stongfacleex | © T

ence of occupancies of the species on the diffusivities, and 8 . ® fvt:;rllgf:;:f:: ®
consequently on the effectiveness factor. In order to high- R weak, finite ex @O
light this influence, we consider diffusion-reaction within a [ —/— Monte Carlo
catalyst of slab geometry, with a fixed classical Thiele mod- 031 Simulations ©0

ulus value¢p = 0.6841. For equal diffusivities of the two
species participating in the isomerization reaction, effective-
ness factor calculated usiii. (28)are shown irFig. 4 for
four different scenarios of confinement and exchange. Fig. 4. Effectiveness factoy vs. total occupancy, for equal diffusivities
For facile exchange of weakly confined molecules, the of the two speciesP1(0) = P»(0) for the slab catalyst geometry for
“correction” factor & = 1, and therefore; for this case four different scenarios. Other parameters fare= 2k2; ¢ = 0.6841. The
coincides with the classical case and effectiveness factoreffectiveness factors are calculated ustbg. (28) Also plotted are the
.. . Kinetic Monte Carlo simulations of Theodorou and W&#] obtained in
is mdepepgient of occupancy, having a coqstant value of '\ ensional lattice.
0.8. For finite exchange, caused by correlation effects, the
“correction” factor,& = /14 015+ 025 = /1 + 01+ 62
for weak confinement and we note the slight decreasev/(1+601+62)/(1—61—62) and then is significantly
of n with total occupancy. For strong confinement with lower than for the corresponding case with facile exchange.
facile exchangeZ = /I/(1— 61 — 6,) and n decreases Let us examine now the case for which the diffusivity of
sharply as the total occupancy increases; these calcu-Species A is 100 times smaller than that ofiAThis sit-
lations are in good agreement with the Kinetic Monte uation can arise for alkane isomerization where due to a
Carlo simulations of Theodorou and WEi4] obtained  higher degree of branching ofzAts diffusivity is signifi-
for isomerization diffusion-reaction with strong confine- cantly reduced. The vacancy profiles for a spherical catalyst
ment in a two-dimensional lattice fap = 0.6841. The with ¢ = 0.6733, are shown iRig. 5awith continuous lines
two-dimensional lattice has a high enough connectivity calculated usingeq. (27)for four different scenarios. As in
value to ensure a high exchange coefficiéni, to allow the case for equal diffusivities, there is excellent agreement
the facile exchange scenario to hold. With finite exchange, between the analytic solutions and precise numerical solu-

0.0 0.2 0.4 0.6 0.8 1.0
Total occupancy, 6,+6,

of strongly confined molecules the correction faci@r= tions (indicated with symbols). Interestingly for this case
0.20 - O strong, facile ex ’
T F ® strong, finite ex ) O strong, facile ex
[ O weak, facile ex ® strong, finite ex
§ weak, finite ex O weak, facile ex
- 0.18 1 = weak, finite ex
< [ ki/k,=2; ¢=0.6733; o L —O— classical
) 016 [ 20D (0)=001; g |
g U167 K
g - 6,,=0.6; 0,,=0.2 2
> F o) L
E L c
S 014F 2
g i S | kik=2
w F W b,(0)/D,(0)=0.01;
o2 [ ,(0)/D;(0)
r 0,.=0.6; 0,:=0.2
- &
010 I T N S T T S N T T T T T A | 01 1 1 [ L NN
0.0 0.2 0.4 0.6 0.8 1.0 0.1 1 10
() dimensionless distance, & (b) Thiele modulus, ¢

Fig. 5. (a) Fractional vacancy profile along the diffusion path in a spherical catalyst $00.6733, and (b) effectiveness factgrvs. classical Thiele
modulus¢. Other parameters ar®,(0) = D1(0) = 0.01; k1 = 2ky; 615 = 0.6; 625 = 0.2. Symbols represent precise numerical solutions obtained using
the numerical techniques described on our webhittg://ct-cr4.chem.uva.nl/zeolitesthe continuous lines in parts (a) and (b) are drawn u&qs. (27)

and (28) respectively), with definitions of as inTable 1
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1.0 - p 1.0 .
[k =0.018"; ki/k, =2; -k, =0.015s"; B,(0)/B,(0) = 1;
FD,(0)=10" m?s™; [ £,(0)=10"" m*s™;
o 0816,=06;0,=02; o o 086,06 6,02
o [d=2um i o
< _ : 5
8 o6f 3 06
0 r e C 7]
[9] [ + O [%2]
@ [ - o 1)
5 - C ]
2 04 C o O strong, facile ex £ 04
£ L R g ®  strong, finite ex pe O strong, facile ex
w L T \J i ’
00& F g 0 weak, facile ex - 0.2 ® strong, finite ex
Y C weak, finite ex ' O weak, facile ex
Lot O~ classical weak, finite ex
0.0 Lol Lol Lol (NI 0.0 Lol Lol -]
0.01 0.1 1 10 100 0.01 0.1 1 10 100
Ratio of diffusivites, £,(0)/D,(0) Ratio of reaction rate constants, k,/k,
Fig. 6. Effectiveness factoy for varying diffusivity ratios. Other param-  Fig. 7. Effectiveness factoy for varying ratios of reaction rate constants.
eters for the spherical catalyst geometry aje= 0.01s™%; ky = 2ko; Other parameters for the spherical catalyst geometrykare 0.01s%;

f1s = 0.6; 625 = 0.2; P1(0) = 107 m?s71; § = 2pum. Symbols repre- g0 = 0.6; fos = 0.2; P1(0) = P2(0) = 10 ¥m?sL; § = 2um. The
sent precise numerical solutions obtained using the numerical techniquescajculations are based d&g. (28) with definitions of® as in Table 1
described on our websitérttp://ct-cr4.chem.uva.nl/zeolitesThe contin-

uous lines are drawn usirtgg. (28) with definitions of® as inTable 1

The “classical” value ofy, obtained by assuming = ¢
the influence of exchange is only very minor. This conclu- is close to the weak confinement—facile exchange scenario;
sion is strengthened when we examine the variation of theindeed forH,(0)/P1(0) = 1, these two calculations coin-
effectiveness factor with the classical Thiele modujui cide as already remarked in the foregoing discussions. With
Fig. 5 the differences between finite and facile exchange increasing values ob,(0)/$1(0) the differences between
scenarios are hardly distinguishable. The effectiveness fac-facile and finite exchange scenarios increase, ang thad
tor for strong confinement is significantly lower than for the to reach nearly constant values.
case with weak confinement. Also plottedkig. 5bis the A similar picture emerges when we vary the reaction equi-
“classical” value ofy, obtained by assuming = ¢, i.e. librium constant, described by the ratio of rate constants,
taking all other correction factorg, =, ¥, and ® to be ki/ko; seeFig. 7. Whenki/k, values exceed say 10, the iso-
unity. The classical case yields the highestalue, slightly merization can be considered to be practically irreversible
higher than for facile exchange and weak confinement. Theand they value is virtually constant, but confinement sce-

conclusion to be drawn frorkig. 5bis that it is not “safe” nario dependent.
to use the classical approach fpwhen the molecules are A further distinguishing feature of zeolite diffusion is that
strongly confined. effectiveness factor is a function of tlsemposition of the
For a diffusivity ratiosP»(0) /P1(0) varying from 0.01 to mixture. InFig. 8 we show the variation aof with varying
100, then values for various scenarios are showrfig. 6. values offys/ (61s+ 029) for three different diffusivity ratios:
P 1. O strong, facile ex
0.20 kilk, = 2; ﬁw ‘20-012 s 0.8 ® strong, finite ex 08 oo
[ o D,(0)=10"" m*s™; L O weak, facile ex r oo o
+ 0,.+6,.=0.8; =2 pm L weak, finite ex E 0O
o DDD 5+, ) o Chssical ~ gggg@g@ﬂcc@a@ggog
g_ : 00000598000000000 g ogbooooooOoooooooooo < o6k 8a
8 P pEEEEEE B 8 L 8 - o°
» r 2] BEm 23 173 - o)
] 0_10-\2\ o] § FEHEEEEEHEEEEEREEE § i OO
5 N6 o L & o)
2 r o 2 2 r
E r OOO é 0.4 § 04 @@@886)@@@@@
w 0405‘E®@@®®®8@@®9®®®®@ Y  P0000000000000000 G pOO% kk=2k=002s" @
N - I 9,(0)=10" m?s™;
- [cYoJcXoXcXcYoRcRoYoRoXoYoRcXoXo) I 0,,+0,,=0.8; 5= 2 um
0(00||||I||||I||||I||||I||||I 0(2||||I||||I||||I||||I||||I 0(2||||I||||I||||I||||I||||I
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
(a) Fractional occupancy of component 1, 6,_ /(6,.+6,.) (b) Fractional occupancy of component 1, 6, /(6,.+6,.) () Fractional occupancy of component 1, 6, /(6,.+6,)

Fig. 8. Effectiveness facton for varying compositions at the surfaggs/(61s + 625) for (a) P2(0)/P1(0) = 0.01, (b) P2(0)/P1(0) = 1, and (c)
D2(0)/P1(0) = 100. Other parameters for the spherical catalyst geometrykare 0.02 s 015+ 6os = 0.8; D1g)=10-14 m?sl; 5 = 2pum. The
calculations are based dfg. (28) with definitions of® as in Table 1
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1or 08 [ ktk,=2; k=0.0011s";
N [ D,(0)=2x10"*m?s™;
% - D,(0)/,(0)=0.0125;

= N 0.6 S=1um:
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(a) Dimensionless distance along reactor (b) Dimensionless distance along reactor

Fig. 9. (a) Effectiveness factor and (b) 2MP conversion along reactor length. The reaction considered is the isomerization of 2MP to 22DMB with
zeolite catalyst. Other parameters are as definethbie 2

(@) D2(0)/D1(0) = 0.01, (b) P2(0)/P1(0) = 1, and (c)  Table 2
H,(0)/P1(0) = 100. ForH»(0)/P1(0) = 0.01 and facile Pure component Langmuir parameters and M-S diffusivities for 2MP and
exchange, the) value decreases with increasing composi- 220MB in zeolite packed bed reactor operating at 473K

tion of Aq; this effect is to be ascribed to the correction 2MP 22DMB
factor_ll/ that increases With_ irjcreasing_proportion af An- Saturation loadinggsat (Mol kg—L) 4 4
terestingly, then value exhibits a maximum value for the  Langmuir parametety (Pa1) 127x 104 7.12x10°°
finite exchange case. Fdb,(0)/P1(0) = 1, we haved = M-S diffusivitylof pure components, 2x10°*  25x10716
1; ¥ = 1 and there is no composition influence. Thealue Bi(0) (Ms)

Length of bedL (m) 0.798

is dictated bypZ = ¢/[(1+ O1s+ O29) /(1 — 015 — O29)7],

. Crystallite radiusyc (pm) 1
depending only on the total occupancy level and not on CoM- ronyard reaction rate constarig, (sX)  0.0011
position. Reaction equilibrium constank;/k; 2

For,(0)/P1(0) = 100 and facile exchange, thevalue Packed bed voidage (-) 0.4

increases with increasing composition of, Alue to the de-  Partial pressures of 2MP and 22DMB at 10°, 0.01
pendence of# on composition. For finite exchange, the G;rs“?/tel(ggiy at inlet (ms) 0.009
maximum iny is again evident. Crystal density, (kgm-3) 620.8
All the illustrative examples considered above pertain to
conditions within a single zeolite catalyst particle. In an
actual reactor the compositions and occupancies will vary
along the reactor, and therefore the effectiveness factor will
also vary. Let us consider the specific example of isomer- 5. conclusions
ization of 2-methylpentane (2MP) to its dibranched isomer
2,2 dimethylbutane (22DMB) in a packed bed reactor. The  The major new contribution of this paper is the devel-
reaction conditions, and parameters are specifid@ile 2 gpment of an analytic solution for diffusion with reversible
the parameters are taken from the recent paper by Jolimaitr§somerization reaction A<> Ay, within a zeolite catalyst.
et al. [30]. The macropore diffusion resistance is not con- Ty extreme cases of occupancy dependence of the M=S
sidered and the only intra-crystalline diffusion resistance is gjfysivities, weak and strong confinement, are taken into
taken into account. The effectiveness factor along the reac-account. Furthermore, correlation effects typical of zeolite
tor length is shown irfrig. 9a The classicah —¢ calculation ifusion are catered for by the introduction of the exchange
yields a constanj value of 0.875 along the reactor and the ¢gefficientp1, in the M=S diffusion formulation. The ana-
2MP conversion at the reactor exit is 0.745 ($gég. 9. lytic solutions, given byEq. (27)for the vacancy profile and
The catalyst effectiveness is slightly lower for the weak con- g4 (28)for 1, have the saméorm as the classic solutions
finement scenario; the influence of exchange coefficient is given in the literaturg28]. The modified Thiele modulus
minimal. The reactor conversion at the exitis 0.735 for weak ¢ js related to the classic Thiele modulgsn the manner

confinement. There is a significant reductiomjifor strong  gytiined in Table 1for various scenarios. The accuracy of
confinement and fractional conversion of 2MP at the reactor the analytic solution is verified by comparison with precise

exit is only 0.51. numerical calculations.

Data from Jolimaitre et al[30]. Also given are the parameters of the
packed bed.
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By means of several illustrative examples we have under- P1(0) = P2(0); B=1, A=1 v=1

lined the peculiarities of zeolite diffusion, encapsulated in . _ _ _ _ _

the various dimensionless parametgrsz, ¥, and®. The r=kafy — kafp = (k1 + k2)6a — ko1~ Bus) (8.1)
classicaly — ¢ calculation is a good approximation only for and, therefore for the equimolar isomerizatidvy (= — N>)
weakly confined molecules with facile exchange between under consideration in this papgg. (12)simplifies to yield
the two species. For strongly confined moleculesythalue .

is significantly lower the classical value and the obtained ZL —0= _9\1;—1@
reactor conversion can be expected to significantly reduced.;—{ pqsatP;(0) 0§

Further work is required to extend the analysis to multi- S ) o
component systems and more general reaction schemes. which implies that the vacancy is constant along the diffusion
path. As a consequence, we must have the partial pressures

proportional to the loadings

(B.2)
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and soEq. (A.1) simplifies to

i=12 (B.3)
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01s
where the modified Thiele modulus caselis= ¢=.
The occupancy profiles can be written in a manner anal-

Appendix A. Solution for strong confinement (y = 1)
ogous toEg. (A.2)and the results are:

For strong confinement; = 1 the differentialEq. (25) 01 l N o — 1Y cosh®é) slab(z = 1)
simplify to yield s w cosh®) ’ &=

19 (. 100v/bvs) v 1 0 _1 (w—1> h2®s) . _
= T gt OV/IPVST ) 2( 2V = — =4 — ; cylindenc =2 B.5
T (s % ) (&P) (9\/5 w2> (A1) e o o ) Toe) Ylinder¢ =2) (B.5)

i . _ . h 1 o — 1Y sinh(3®¢) _
where the modified Thiele modulds = ¢8EW. The differ- " o + - Snh3®) sphergs = 3)
S

ential Eq. (A.1)is similar to the classical form for diffusion
and reactior{28] and the solution for the vacancy profiles with effectiveness factorsg given byEq. (28)for the three
can be derived in an analogous manner for skab=(1), geometries.

cylindrical (¢ = 2) and sphericalf= 3) geometries:

H _ 1 I (‘1’2 - 1) cosh®§) slak(c = 1) Appendix C. Solution for weak confinement ¢ = 0)
Ovs W2 Y2 cosh®) ’
Ov 1 w2 _1 1o(29%) lind 5 The derivation for the solution for weak confinement can
ﬂ - 92 + w2 Io(2®) cylinder(; = 2) be derived for the slab geometry using the classical work
Oy 1 w2 _ 1\ sinh(30¢) of Ruthven[13]; this paper along with the book of Aris
T + ( 77 ) h30) spheré; = 3) [28] is used as a guide in the derivation given below for all
Ovs Sinh(3®) (A2) geometries. The general differentiad. (25) simplifies to
' yield:
The effectiveness factor is obtained from the defining equa- 9 1 9(Bv/bvs) o by 1
ton: w\ovme o) P \g mez) Y
o JorElde [ — WPy /ove))E L de We substitute
" ot -2 RS GV NV LY/ E S
(A.3) Ov/bvs 0 T obvs ox 0
and the classical results fgigiven inEq. (28)are recovered. to obtain
0 - 96y /bvs) 1
xa—g = (ppEW)? (% - @x>
Appendix B. Solution for equal diffusivities _paw? (1 i 1 36y /Oys) ©3)
w2 (By /bvs) 0§ '

For the special case in which the two isomers have the
same M-S diffusivity, the following simplifications result:  IntegratingEq. (C.3)we obtain
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& ax
~d
/g—ox o
§ 1 1 3By /bvs)
- Evl(1- = d
/g:o(d)ﬂ ) ( w2 (bv/ GVS)) 0% g
(C.4)
whose solution can be written down as
O Ovo
—+v2985w ([ 2L - 22
X w <<9Vs evS>
1/2
—iz (In <ﬂ> —1In (ﬁ))> (C.5)
' bvs Ovs

wherefy is the vacancy at the center of the slgb< 0).

In order to estimate the vacancy at the center of the slab,
we assume chemical equilibrium, ie= 0. This assump-
tion of chemical equilibrium is expected to be hold for low
effectiveness factors, say< 0.5. FromEgs. (14), (21) and
(22) we obtain

b0 _ k2,
620 ki’
6vo _ (k2 + Ak) _ 1
bvs (A+ 1= ADbi9ks + (14 (A = Dbk W2
(C.6)
CombiningEgs. (C.5) and (C.6yields
_ ow (2~ L
(= 24P5Y) <<9vs WZ)
1 oy 1/2
-7 (In (9_\/5) -2 In(lI/))) (C.7)

The effectiveness factor for the slab geometry is defined by

g @ et~ remo
e @BEW2AL- D)

(C.8)

Combining Egs. (C.7) and (C.8)esults in the following
expression for the effectiveness factor

e

_ . V2(1— (1/%?) = 2In(¥)/¥?)
T GBEY

(C)
11— 1/v2]

n
(C.9)

Since the derivation oEg. (C.9)was on the basis of low
effectiveness factoy < 0.5, we can conclude fror&qg. (29)
that theeffective Thiele modulusp for weak confinement is
PBEY
&)
The following formula for the effectiveness factor derived
by Ruthven[13]:
_ V2(=01s— In(1 = 619))
¢V (1 — 019)01s
can be recovered froraq. (C.9)by making the additional
assumptions: (a) the fractional loading of the product at the

b =

(C.10)

(C.11)
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surface is vanishingly small, i.62s — 0, and (b) diffusion
of the product is infinitely fastp,(0) — oc.
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